If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.57x^2-3.7x-2.5=0
a = 0.57; b = -3.7; c = -2.5;
Δ = b2-4ac
Δ = -3.72-4·0.57·(-2.5)
Δ = 19.39
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3.7)-\sqrt{19.39}}{2*0.57}=\frac{3.7-\sqrt{19.39}}{1.14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3.7)+\sqrt{19.39}}{2*0.57}=\frac{3.7+\sqrt{19.39}}{1.14} $
| d+23/9=4 | | -24=-6(t+-2) | | x+4.1=1.04 | | g/7+-58=-53 | | (4x-13)+(2x+37)=180 | | 47=x+12 | | 21-2q=13 | | 2v+-337=253 | | -1+x/12=3 | | p/10+-191=-217 | | -860.8575v=9743575 | | –4z+10=–2z−8+2 | | 6(c+39)=324 | | (4x-13)+(2x+37=180 | | q/24-3=2 | | 09=68n | | (2x+8)(4x-10)=0 | | 8f+7f5-652/074-5-96=9.5212 | | 8x^2=43 | | −2c+1=15 | | a+20/5=7 | | x3=5390 | | 3p–18=7p+2 | | (9x+37)+(14x-23)=180 | | 9f+6/97-5=2.276 | | d/3+2=15 | | 2x^{2}+4=10 | | (3y+4)/2=3 | | 13t+3=16 | | -0,04×0,36-0,36x+6,4=0 | | (15x+29)+(26x-23)=180 | | -0,04×0,36e-0,36+6,4=0 |